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Abstract. Data is expanding at a rapid pace these days, and dealing
with it has become incredibly challenging. Since they allow for the storage
of various data structures, NoSQL graph databases are becoming more
popular. Nonetheless, due to their schema-less nature, improper data
migration and manipulation during the query phase might result in
significant data loss. This paper deals with data migration within NoSQL
graph databases in which we propose a graph matching algorithm based
on similarity measures. We also adopt a lazy data migration approach
to ensure a low cost of data migration and avoid critical data loss.

Keywords: Graph databases, data migration, similarity measures, graph
matching, nodes similarity, relationships similarity.

1 Introduction

NoSQL data models are different from the relational model in terms of structure
and capacity. NoSQL data models offer great flexibility due to their schema-
free nature. As one of the NoSQL data models, the use of graph databases has
increased significantly. Graph databases are database models that are based on
the graph structure, essentially nodes and edges. NoSQL graph databases come
with the benefit of handling large volumes of heterogeneous and semi-structured
data. Yet, data management in such databases is a challenging task.

Data under databases with a pre-defined scheme, such as relational databases,
can be migrated in a version-controlled sequence by saving each schema trans-
formation alongside its data migration. While data under schema-free databases
still require careful migration techniques.

Graph databases have a schema-free nature. Thereby, schemes are implicit
and modified directly by managing data instances without any specific con-
straints on any such manipulations.
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Primarily, a data management task of a graph database does not require
a dedicated team of database administrators. It is often the responsibility of
Application teams or business units.

A common practice to handle data and schema management is to write
custom migration scripts to migrate data eagerly (all data migrated on one
go when the database structure changes) or lazily (migrating only data being
acceded to).

When migrating data eagerly, data is accessed all at once. That reduces the
data latency. Nevertheless, migrating all data at once can take a long time and
requires a shut down the access to the database. With lazy data migration, legacy
data that no longer needs any changes is not accessed. Yet, this strategy has a
high data latency.

This paper deals with data migration and evolution in graph databases. It
propose an approach that helps to manage data migration taking into account
not only the flexibility provided by such databases but also the nature of the
graph databases.

The remainder of the paper is structured as follows: Section 2 overviews of
the state-of-the-art that treated data migration in the field of NoSQL databases
and specifically graph databases. Section 3 contains some required preliminary
definitions. Section 4 explains our approach for data migration and details our
process of lazy data migration.The proposed approach is based on similarity
measures and graph matching. We performed experiments and addressed the
evaluation results in section 5. Section 6 concludes the paper and presents
some future works.

2 Related Works on Data Migration

Data migration has been an area of active research with a long history [10, 11, 13,
1]. There are essentially two main data migration strategies to guaranty accurate
data migration and evolution and recently, three new data migration strategies
are developed.

In the following, we start by presenting the data migration strategies. Then,
we overview related works on data migration within the context of NoSQL
databases.

2.1 Data Migration Strategies

There are essentially two data migration strategies to guaranty accurate data
migration and evolution such as Eager data migration and Lazy data migration.
The authors in [12] present three more migration strategies such as incremental
migration, predictive migration, and adaptive migration.

Eager data migration: with this strategy, all entities within the database
are migrated at once. Though this strategy has a low access cost (latency) , it
procures a high migration cost as some of the data will be updated even though
they will not be accessed in the future. This strategy is best when migrating
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data from different DBMS (E.g., from a relational model to graph model). The
key issue of this strategy is that the data, even data that may not be usable
again in the future, must be kept up to date.

Lazy data migration: with this strategy, all data remain unchanged until
being accessed. This strategy has no immediate migration costs and ensures
flexibility to agile requirement changes. Lazy data migration strategy aims to
minimize migration costs. Nevertheless, when compared to the eager data mi-
gration strategy, data access latency can be relatively high.

Incremental data migration: Incremental data migration strategy works sim-
ilarly to lazy data migration strategy, i.e., only data that needs to be changed is
accessed. Nonetheless, lazy migration periods are regularly interrupted to clean
the database which reduce run-time overhead caused by updating legacy data
on-the-fly. For these interruptions, eager data migration over legacy entities is
performed regularly.

Predictive data migration: Predictive data migration strategy highlights the
frequently accessed data. It keeps track of past data accesses while ordering
the accessed entities accordingly via exponential smoothing. This established
technique in time series data weighs the entities by their actuality and access
frequency. [12] present a detailed study of the different data migration strategies.

Fig. 1. Characteristics of the different data migration strategies.
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Figure 1 compare the different data migration strategies with regards to the
migration costs, latency, migration debts and effort for query rewriting [12].

The term latency overhead refers to the time needed to retrieve the data. In
[12], migration cost is a term that refers to the charges occasioned by migrating
the data, and migration debt refers to the changes needed to be invested to
migrate data to a homogeneous data structure.

Both eager data migration and incremental data migration have a high mi-
gration cost due to migrating all entities at once. Lazy data migration has the
lowest data migration costs. However, it has the highest latency overhead and
migration cost.

2.2 Data Migration in NoSQL Databases

Data migration in NoSQL databases is a relatively new research field. Regardless,
researchers conducted many works in this area, from managing JSON-based files
to schema extraction and data migration.

The authors in [4, 5] present a framework τJSchema that for the definition
and validation of temporal JSON documents that conform to a temporal JSON
schema. The authors proposed a versioning technique that provides a complete
set of low-level and high-level change operations. Both at the instance and
schema levels, τJSchema fully supports temporal versioning of JSON-based Big
Data.

The work presented in [14] details a study of the evolution of the domain
model of applications built against a NoSQL data store. This methodology is
applied to ten real-world database applications. They start by extracting the
schema, then analyze the entire project history. Lastly, they analyze the evolution
of the NoSQL database schema.

In [15], the authors propose a framework called Datulation that support
lazy and eager data migration strategies using Datalog rules. Datalog is a pro-
gramming language for deductive databases. The work highlights the merit of
the lazy data migration strategy. The framework supports adding, renaming, or
removing attributes for entities. When carrying out data migration eagerly, the
framework evaluate Datalog rules bottom up. As for lazy migration, Datulation
evaluates Datalog rules top-down, thus migrating only the legacy entities that
are deployed by the application. One strong point of Datalution is that it can
lazily roll forward chains of schema changes. Yet, this tool only supports data
with prefixed schema and written in JSON format.

In [9], the authors demonstrate ControVol Flex, an Eclipse plugin for con-
trolled schema evolution in Java applications backed by NoSQL document databases.
Based on a lazy migration strategy. This tool helps to migrate the NoSQL
by adding Morphia annotations to the code. It also supports an automatic
version-numbering mechanism for the different stages of the schema evolution
process. This tool keeps track of the various schema versions that occur in the
production data store. It also support lazy and eager data migration strategies.
The advantage of ControVol Flex is that it allows to carry out eager and lazy
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data migration concurrently, which is vital for the continuous deployment of
zero-downtime applications.

In [12], the authors present a methodology of self-adapting data migration
which focuses on data migration itself. The framework presented is based on
schema management middleware Darwin and a tool-based advisor MigCast.
Darwin supports schema extraction, schema evolution, and data migration of
data stored in a NoSQL database. Darwin support all four data migration
strategies such as eager, lazy, incremental, and predictive strategy. Darwin also
supports popular NoSQL database management systems, such as MongoDB,
Couchbase, Cassandra, and the multi-model database ArangoDB. The choice of
the best data migration to be applied is made by MigCast : a tool for self-adapting
data migration strategy. MigCast helps to explore the different data migration
strategies in order to examine the effects of the data migration strategies with
regard to the metrics of migration costs, latency, and migration debt.

The work [6] emphasizes the importance of tracking the history of data
changes within the graph database. The authors present a plug-in that de-
livers a novel representation of historical graph data using graph versioning
techniques.This work features the specific structure of the graph database. It
proposes an approach to represent history related to both (i) nodes (track down
changes that occurred to the entity itself) and (ii) relationships (track down
the changes to the relation including start or end node updates). The authors
in this work present the different versions of data separately in another graph
called VersionGraph. VersionGraph stores the history of different versions of a
data graph.

The authors of [7] introduce a method based on in-memory architectures
to retrieve the structural schema of a graph database. The authors focused on
schema extraction in the context of semi-structured graph data. They extend the
existing methods to manage large NoSQL graph databases. They introduce sev-
eral types of summaries and provide the methods to extract them. The authors
present four types of summaries, such as structural summaries, structural data
summaries, structural data key property summaries, structural data key-value
property summaries.

The work [16] presents a solution for missing data in the NoSQL graph
databases by e introducing a novel approach for mining gradual patterns in the
presence of missing values. The focus of this paper is the extraction of gradual
patterns from property graphs on IntraNode-Label gradual patterns, that is the
pattern extraction process is to be performed among the properties/attributes
of the “same label” nodes. The work presented in [2] proposes a data definition
language (DDL) schema for property graphs inspired by Cypher query language
to handle schema validation and schema evolution for graph databases. The work
presented a mathematical framework that allows enforcement schema and ex-
presses propagation from schema to instance and vice versa. Table 1 summarizes
data migration works in NoSQL databases.

Table 1 compares the presented works with regard to the data storage type,
the different data migration strategies they support, and whether or not they
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Table 1. Data migration and schema extraction in NoSQL databases.

Works Data type Migration Strategy schema
extraction

schema
versioning

[4, 5] JSON documents -

[14] NoSQL databases Eager, Lazy, Incremental,
Predictive

-

[15] NoSQL databases Lazy -

[9] NoSQL databases Lazy -

[12] NoSQL databases Eager, Lazy, Incremental,
Predictive, Self-adapting

-

[6] Graph databases -

[7] Graph databases - -

[16] Graph databases - -

[2] Graph databases -

support schema extraction and schema versioning. being an important step of
data management, all works presented offer schema extraction techniques. even
though most of them support different types of NoSQL databases, yet only a
few of them emphasize the graph database structure in terms of nodes and
relationships.

2.3 Discussions

Most works use data stored in document-store databases or data of JSON format
as input. Adopting this strategy when dealing with graph data excludes the
benefits of using graph theory and graph algorithms that may help reduce the run
time overhead. Moreover, they treat data entities similarly and don’t consider
the graph structure (nodes, and relationships). That is explained due to the
structure of links (relationships) between different entities as they are different
with each NoSQL data model. Thus, most works support data only and exclude
the relationships between entities.

Additionally,they emphasize schema extraction or schema validation. Though
schema proved to be relevant when dealing with data history or data migration,
depending on schema extraction or schema validation to deal with data migration
goes against the fundamental idea of having a schema-free database nature.

Graph matching methods are widely used for subgraph matching or extrac-
tion. They also proved to be very useful for pattern recognition and biological
and biomedical database where graph representation of data is used. NoSQL
graph databases are already based on graph theory. To make sure to highlight
the structure of the graph database, proposing a solution based on the graph
matching technique seems very promising. By definition, graph matching is the
problem of finding a similarity between graphs. Thus, we propose a solution
based on string similarity measures and graph matching to help migrate data
correctly within the graph database.
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3 Preliminary Definitions

A graph database (GDB) is formed by a set of nodes, relationships, proper-
ties, and labels. Both nodes and their relationships are named and can store
properties. These properties are represented by key/value pairs. Nodes and
relationships can be labeled. The edges between two graphs representing the
relationships have two qualities: they always have a start node and an end node
and are directed making the graph a directed graph. Relationships can also have
properties.

Definition1 (graph): A graph G is defined by a pair (V, E), where V is a set
of vertices and E is a set of edges with E ⊆ (V xV )

Definition2: (directed graph is defined by a pair (V, E), where V is a set of
vertices and E is a set of edges with E ⊆ (V xV ) and where all the edges are
directed from one vertex to another.

Definition 3 (Graph database): A graph database is a couple (N, R), where
N is the total set of nodes and which form the entities of GDB and R as the set
of relations that join the different nodes.

Definition 4 (Nodes): Each node n is composed of its identifier idn, a set of
properties Pn, and a set of labels Ln. It should be noted that the identifier does
not contain any semantic information. Semantic is usually expressed through
one or more labels and a single property is a couple of as (key/ value) pair. A
node can be written as follows: ∀n ∈ N ;n = (idn, Pn, Ln).

Definition 5 (Relationships): A relation r is defined as (idn, Strn,Endn, T, P )
which contains the identifier id, the start node Strn/ end node Endn, the type
of relation T, and its set of properties P.

4 LD-MIG: Graph Data Migration Approach

In order to control data migration under graph databases, we propose a lazy data
migration approach based on graph matching. The data migration approach
under graph database is a process composed of four phases (i): Analysis phase,
(ii): Graph matching, (iii): MOs identification, and (iv): Graph merging as shown
in figure 2. In the following, We assume that we have two graphs GDB (the
database that is currently deployed) and the operation-graph(the new graph to
add) where N (respectively M) are the sets of nodes of GDB (respectively the
operation-graph) and R (respectively W) are the sets of relationships of GDB
(respectively the operation-graph).

4.1 Analysis Phase

The first step in our approach is to examine the input queries responsible for any
database changes. The aim of this phase is to generate the Operation-graph from
the query to be applied on the database or the source code. This step intend
to analyze the composition of different CRUD(create, read, update and delete)
queries, extract the input data, and build a graph model based on the operations
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Fig. 2. Overall approach.

to be performed on the graph database (GDB). The generated graph is called
an operation-graph (OPG).

We choose to work with Neo4j as one of the most popular graph databases
management systems that use Cypher a SQL- inspired query language that
describes visual patterns in graphs using ASCII-Art syntax. Figure 3 presents
an example of an operation-graph created based on a ”Merge” query expressed
by Cypher in Neo4j.

Fig. 3. Merge query with its corresponding operation-graph.

4.2 Graph Matching

In this step, we aim to extract a sub-graph from GDB that is most similar
to the operation graph. The extracted sub-graph will serve as the entry of the
third phase. A graph database presents the data as it is conceptually viewed
in the form of nodes linked by relationships. Therefore, we propose a process
composed of node-based similarity measures, relation-based similarity measures,
and graph matching step based on Levenshtein edit distance to detect the most
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similar sub-graph. As mentionned above, the Graph matching phase is composed
by three main steps (i): nodes similarity, (ii): relationships similarity,
(iii): sub-graph matching .

Given the nature of the graph database, we can safely consider that node’s
labels, properties, and relationship types are presented as strings. Therefore,
it is suitable to propose a string-based similarity, embedded in the process of
structure graph matching, to identify the similarity between both graphs.

Nodes Similarity We assume that we have two graphs GDB (the database that
is currently deployed) and the operation-graph. N (respectively M) are the sets of
nodes of GDB (respectively the operation-graph) and R (respectively W) are the
sets of relationships of GDB (respectively the operation-graph). The similarity
between two nodes (m,n) depends on the similarity between their labels and
their properties.

Labels similarity. To compute the similarity between two labels we simply
apply the Levenshtein distance between them. Taking into account that a node
may have more than one label, the similarity of the labels between two nodes is
calculated by comparing each label of m to each label of n and then taking the
maximum value obtained. Formula 1 determines the similarity between a label
lm ∈ Lm of a node n ∈ N with all the labels of a given node n and returns
the maximum:

sim(lm, Ln) =
k

max
j=1

(
1− lev(lm, lnj)

max(length(lm), length(lnj)

)
(1)

To determine the similarity between all labels Lm of a node m with a given node
n ∈ N we apply algorithm 1.
As input for algorithm 1we have two node’s labels Lm and Ln and the overall

Algorithm 1: Simlabels.

Input: Ln, Lm

Output: simls
; . With Ln as the labels of the node n, Lm as the labels of the

node m and simls as the similarity value between the labels of m

and the labels of n

1 k ← min
(
| Lm |, | Ln |

)
2 x← the node with the minimum set of labels
3 y ← the remaining node

4 simls← simls
(
Lm, Ln

)
=

∑k

i=1
SimL(lxi,Ly)

k

similarity simls as an output, (line4) calculate the average similarity using the
simls formula.

Properties similarity. Node property is composed of a key/ value pair.
To measure the similarity between two properties we compute the similarity of
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their keys and then for the maximum value obtained, we measure the similarity
between their values. To calculate the similarity between two pairs of keys kmi
as a key of a property of the node m (respectively knj as a key of a property of
the node n) we apply the following formula:

SimK(kmi, kn) =
h

max
j=1

(
1− lev(kmi, knj)

max(length(kmi), length(knj))

)
(2)

SimV alue(vmi, vnj) =
(
1− lev(vmi, vnj)

max(length(vmi), length(vnj))

)
(3)

Formula 3 computes the similarity of property key kmi of the node m to all
properties of the node n. Formula 4 computes the similarity between the value
of kmi and the most similar key from the node n.

The global similarity between both of the properties is computed by the
average of the keys and values similarity. Algorithm 2 describes the process of
computing the properties similarity.

Algorithm 2: Simproperties.

Input: Pm, Pn

; . Pm and Pn are the properties of the nodes m and n

Output: simps
; . simps the similarity value between the properties of m and the

properties of n

1 z ← min
(
| Pm |, | Pn |

)
2 x← the node with the minimum set of labels
3 y ← the remaining node
4 foreach i ∈Px do
5 foreach j ∈Py do

6 dictkey ←
{
xkey : i, ykey : j, simkey : SimK(kxi, ky)

}
; . dictkey is

a dictionary that contains i (current key of x), j (current

key of y) and their similarity value using SimK(kxi,ky)

7 maxdictkey ←
{
xkey : i, ykey : j, simkey : MaxSimK(kxi, ky)

}
;

. maxdictkey is a dictionary that contains the maximum

similarity of i (current key of x ) to all the keys of y

8 maxdictkey ←
{
xkey : i, ykey : j, simkey : MaxSimK(kxi, ky), simvalue :

SimV alue(vxi, vyj), propsim : maxpro
}

; . add the value similarity

(SimValue) and the overall similarity (max pro) to maxdict

9 simps(Pm, Pn)←
∑z

i=1
maxdict[′maxpro′]

z

As an input for algorithm 2, we have the sets of properties of the nodes m and n.
The output will be simps of all properties (similarity value between the properties
of m and the properties of n). After determining the node with the minimum set
of properties (lines:1,2,3) we calculate the maximum keys similarity and store
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them in a dictionary where (dictionaries are unordered, changeable collections
that have key/value pairs used in the python programming language.) (line 4 to
7) Then, for each key in Maxdict, the corresponded value similarity is computed
(line 8). Finally (lines 9) computes the overall properties similarity.

Nodes similarity. The nodes similarity is calculated by invoking the two
algorithms Algorithm1 simlabels (Lm, Ln) and Algorithm2 simproperties (Pm,
Pn) as follows:

nodessim(m,n) =
simlabels(Lm, Ln) + simproperties(Pm, Pn)

2
. (4)

4.3 Relationship Similarity

As stated previously, a graph database is characterized by its nodes and re-
lationships. Relationships are the key entities used in the database to express
semantic. A relationship is declared by a directed edge and defined by its type,
start/end nodes, and eventually properties. We measure the similarity between
the two relationships by measuring the similarity between their types (names)
and properties.

Relationship type similarity. We assume that we have two relationships r
= (idr, Strnr,Endnr, Tr, Pr)and w = (idw, Strnw,Endnw, Tw, Pw) respectively
belongs to GDB and the operation-graph. The first step is to verify the existence
of the relationship by measuring the similarity between both their types. We
simply apply the Levenshtein distance function to compute the similarity be-
tween their types (names). It is to note that a relationship can have one type
presented as a string. Formula 6 calculates the relationship-types similarity.

Simtyperelation(Tw, Tr) =
(
1− lev(Tw, Tr)

max(length(Tw), length(Tr))

)
. (5)

Properties similarity. To compute the similarity of the relationship’s prop-
erties, we reuse algorithm2 of the node’s similarity.

In this section, we mainly focus on proposing a subgraph matching algorithm
for specifying the similarity between the graph database (GDB) and Operation-
graph. This algorithm 3 employs the similarity measures we previously suggested.

Algorithm 3 have as input both GDB (the current database in use) and OPG (the
Operation-graph. The algorithm go through every node in OPG and compare it
with all nodes of GDB. Everytime a high similarity between two nodes m and n
is detected (lines 3 and 4), we compute the similarity between their relationships
(line 5 to line 12). The output is a dictioanary SIMDICT containing the entities
of GDB that are most similar to OPG.

nodes similarity and graph matching phases are published recently in [3].
Further details concerning the nodes and relationships similarity are discussed
in [3].
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Algorithm 3: Graph matching.

Input: GDB,OPG
; . with GDB as the database in use and OPG as the opertation-graph

Output: SIMDICT
; . SIMDICT is a dictionary contaning the diffrent nodes and

relationships of OPG and the most similar nodes and relationships

of GDB a long with their similarity values

1 foreach m ∈ OPG do
2 foreach n ∈ GDB do
3 NSIM ← nodessim(m,n);
4 while (NSIM > threashold) do
5 R← extract all relationships of n and assign them to a list R;
6 W ← extract all relationships of m and assign them to a list W;
7 foreach w ∈W do
8 foreach r ∈ R do
9 TRSIM ← Simtyperelation(Tr, Tw);

10 PSIM ← simproperties(Pr, Pw);
11 *********** ENSIM ← nodessim(Endnr, Endnw);

12 RelSim← TRSIM+PSIM+ENSIM+NSIM
4

;
13 while (RelSim > threashold) do
14 SIMDICT ←

SIMDICTidmi, w, idn, r,NSIM(n,m), RelSim(w, r)

4.4 MO’s Identification Phase and Data Migration Process

Having a schema-free nature, while managing data in a graph database, we
implicitly manage its schema. The most fundamental data manipulation that a
graph database DBMS offers are:

– Create/Add: refers to create a new entity in a database.
– Update: refers to updating an existing entity in the database.
– Delete: refers to deleting an existing entity from the database.

GDBMS are error-prone due to the lack of schema restrictions. In the following
section, we propose a set of operations for correctly migrating data in GDBMS
and a global data migration algorithm. This step aims to identify the set of
operations needed to convert an OPG entity to a GDB entity and ensure a
correct data migration. Let OPG and GDB be two graphs where (M, W) are
the sets of nodes and relationships belongs to OPG and (N, R) are the sets of
nodes and relationships belongs to GDB.

A homomorphism h : OPG −→ GDB is a function hη : M −→ N and a
function hε : W −→ R, mapping nodes and relationships (M,W) of OPG to
nodes and relationships (N,R) of GDB. It is to be noted that hη and hε are
the sets of operations required to safely migrate M and W to N and R. In the
following, we present in detail a set of modification operations. In the scope of
this paper, we cover the basic CRUDE operations such as Add and Update.
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Add Operation. This Operation requires the non-existence of the entity in GDB.
Let e be the entity from OPG to migrate e can be a node m or a relationship w.

Algorithm 4: Procedure: addEntity.

Input: (e,GDB)
1 ∀n, r ∈ GDB, e ∈ OPG NodesSim(m,n) = 0 or RelSim(w, r) = 0 while

(NodesSim(e,n)=0) do
2 Add m(Lm, Pm) to GDB.

3 while (RelSim(e,r)=0) do
4 if (Strnw and Endnw∃ GDB) then
5 Add only Tw and Pw to OPG
6 else
7 Add both nodes and the relationship to GDB

The addEntity aims to add a new entity from OPG that does not exist in
GDB. If the entity to add is a relationship then, we verify the existence of its
start/ end nodes first (lines 3 to 7).

Update operation : Updating an entity (a node or a relationship) can be done
by adding, updating, retyping, or even deleting its elements (node labels, node
properties,relationship properties or relationship types). Algorithm 5 illustrate
an example of updating a node property.

Algorithm 5: Procedure: updateEntity.

Input: (m,GDB)
1 ∀n, r ∈ GDB, e ∈ OPG NodesSim(m,n) >= threashold or
RelSim(w, r) >= threashold while (NodesSim(m,n) >= threashold) do

2 if (pmPn) then
3 add the new property pmto the existing node n
4 else if (pnPm) then
5 delete the property pm from the existing node n
6 else
7 replace the existing property pm with pn

Data Migration Process : the data migration process takes as input the most
similar entities from GDB to OPG, then it apply the diffrent modification
operations over them. As it only deals with entities being modified, our data
migration process is concidered to a lazy data migration process. algorithm 6
detilas the process to migrate data correctly.
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Algorithm 6: Procedure: Lazy data migration.

Input: (SIMDICT,GDB,OPG
; . with GDB as the database in use, OPG as the opertation-graph and

SIMDICTis a dictionary contaning the diffrent nodes

andrelationships of OPG and the most similar nodes

andrelationships of GDB a long with their similarity values

1 while (NodesSim(m,n) < threashold) do
2 addEntity(m,GDB)

3 while (RelSim(w, r) < threashold) do
4 addEntity(w,GDB)

5 while (NodesSim(m,n) >= threashold) do
6 if ({Pm} ∩ {Pn}=∅) then
7 updateEntity(pm, GDB)
8 else if ({Lm} ∩ {Ln}=∅) then
9 updateEntity(lm, GDB)

10 else
11 break;

12 while RelSim(w, r) >= threashold do
13 if (NodesSim(Strnw, Strnr) < threashold)OR

(NodesSim(Endnw, Endnr) < threashold) then
14 addEntity(Endnm,GDB)
15 else
16 updateEntity(Strnw,GDB);
17 updateEntity(Endnw,GDB)

18 if ({Pw} ∩ {Pr}=∅) then
19 updateEntity(pw, GDB)
20 else
21 updateEntity(Pw,GDB)

Algorithm6 takes as input the simiarity dictioanry SIMSICT that contains the
most similar entities of GDB and its similarity measures. Then, it compares each
measure to a prefixed threshold. In case that the similarity between two entities
is low, we then add the entity from OPG to GDB (lines 1 to 4). In case two
entities have a high similarity values we then update the existed entity in GDB
depending on the dissimilarity that both entities may have.

5 Evaluations: LDBC-SNB Benchmark

To evaluate the proposed approach, we carried out a set of experiments on the
LDBC-SNB benchmark. First, we present an overview about the LDBC-SNB,
we then present our evaluation results.
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5.1 LDBC-SNB: Overview

LDBC’s Social Network Benchmark (LDBC-SNB) is an effort intended to test
various functionalities of systems used for graph-like data management. For
this, LDBC SNB uses the recognizable scenario of operating a social network,
characterized by its graph-shaped data.

A detailed description of the benchmark can be found in the initial pub-
lications [8, 17]. The model features individuals and their actions in a social
network over time. It describes the structure of the data in terms of nodes
and their relationship. The initial databases contain 29,192 nodes and 39,800
relationships.

Fig. 4. Snapshot of the LDBC-SNB database.

5.2 Evaluations

We carried out two evaluations: (i) an expremental evalutaion in which we
extracted randomly ten relationships with their nodes (OPG1). We first applied
some changes to the extracted entities (OPG1), then we carried off our program,
and finally, we verified whether the changes made are correct in the GDB. And
(ii) a second evaluation in which we variate the number of entities of the
Operation-Graph. The evaluation is done based on the run time. the datasets
used as Operation-graphs are:

– The first dataset (OPG1): contains 30 entities randomly extracted from the
database GDB.

– The second, THird and fouth datasets (OPG2, OPG3,OPG4): contains re-
spectively 60,150 and 200 entities.

– For the fifth, sixth and seventh datasets (OPG5, OPG6,OPG7), we increased
the number of entities and alter more modifications to them. The datasets
contains respectively 500, 700,1000 entities.
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– The eighth, ninth and tenth datasets (OPG8, OPG9,OPG10) contains re-
spectively 50, 100 and 200 entities.

It is to note that the entities of datasets (OPG1 to OPG7) are randomly ex-
tracted from the GDB. to be able to test our approach, we altered modifications
to each of these datasets. Datasets (OPG8, OPG9 and OPG 10) contains entities
that are very dissimilar to the original database GDB. We used Neo4j as a graph
database management system and python 3.7 as a programming language. In
this paper, we have carried out two types of experimentation. The (i): first
evaluation in which we used the first dataset as operation-graph to evaluate the
correctness of our data migration approach. And the (ii): second evaluation in
which we used all the datasets and for each set, we compute the run time of
graph matching and the data migration process.

Experimental Evaluation We extracted ten random relations with theirs
corresponding nodes from the initial database GDB (OPG1-1). Figure 5 displays
the nodes and relationships of OPG1-1.

Fig. 5. Snapshot of OPG1-1.

Then we altered some modifications over some of the nodes and relationships
(OPG1-2). We changed about 30% of the dataset. An example of modifications
are presented as follows:

– changing the label ”Person” of some nodes to ”User”.
– changing the value of the property ”creationDate” of some nodes.
– changing the relationship type ”HAS-TAG” to ”H-TAG”.

We then performed our data migration process to check the data correctness
and migration run time after migrating the data. Figure 6 is a showcase of the
database after the data migration.
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Fig. 6. Snapshot of OPG1-1 after data migration.

Table 3 summarizes the obtained results. The performance of our data mi-

Table 2. Results of the first evaluation.

OPG Changes latency Data correctness Run time similarity value

OPG1-1 0% 0.017 s 100% 07.639049 s 1

OPG1-2 30%. 0.016 s 100% 0.783 s 0.93566120387549

gration approach shows that, though the runtime is relatively higher when the
average similarity is ¡1 , legacy data is migrated correctly and no data loss is
generated. it is not that data latency is almost the same for each dataset.

Second Evaluation For the second type of evaluation, we used all the datasets
and for each set, we computed the run time of graph matching and the data
migration process. We also computed data latency (number of data access for
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each data migration). Table 2 represents a quantitative study for all datasets.
Table 3 summarizes the results we obtained. We noticed that even though our

Table 3. Results of the second evaluation.

OPG OPG entities nodes relations properties

OPG1 30 20 10 128

OPG2 60 40 20 198

OPG3 150 100 50 630

OPG4 300 200 100 1180

OPG5 1500 1000 500 3750

OPG6 2100 1400 700 5009

OPG7 3000 2000 1000 630

OPG8 150 100 50 274

OPG9 300 200 100 563

OPG10 600 400 200 1142

Table 4. Results of the second evaluation.

OPG Similarity value Run time

OPG1 0.93566120387549 00:07.639049 m
OPG2 0.9549847478673998 00:17.390528 m
OPG3 0.9356612038754876 00:19.007823 m
OPG4 0.9549847478674043 00:18.727151 m
OPG5 0.8501378090918807 03:25.444671 m
OPG6 0.9281139995680916 04:59.606046 m
OPG7 0.8491987906273264 07:33.561546 m
OPG8 0.5036420203001845 00:12.009441 m
OPG9 0.5036420203001861 01:18.471618 m
OPG10 0.8491987906273264 07:33.561546 m

approach ensure a correct data migration aver small datasets, checking both
graph similarity and running the data migration process take an important time.
In fact, the runtime depends greatly on entities number and the modification
rate, i.e., the more dissimilarity the higher the run time. In fact whenever the
dissimilarity is higher, the more data to be migrated. Figure 7 illustrates the
runtime of executing our program in regards to the number of entities and the
average similarity.

6 Conclusion

Graph databases are widely used in recent years. For that, it is crucial to study
its evolution. However, migrating data in such databases can be difficult given
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Fig. 7. Runtime by number of entities and average similarity.

their schema free nature. In the scope of this paper, we proposed an approach
to safely migrate the graph database.

In this paper, We presented a Graph matching algorithm based on similarity
measures in which we extracted a sub-graph from the initial database that is
most similar to the Operation-graph.

We also presented a process based on the lazy data migration strategy in
order to minimize data migration costs and reduce unnecessary data migration
procedures (migrating data that will not be accessed in the future) and finally,
we detailed the MO’s identification phase in which we described specific scripts
that help control the migration of legacy data within the graph database. As
future work, we aim to propose more optimization by developing an approach
based on deep learning algorithms in order minimize the runtime of our approach
as it has an exponential complexity.
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17. Szárnyas, G., Prat-Pérez, A., Averbuch, A., Marton, J., Paradies, M., Kaufmann,
M., Erling, O., Boncz, P., Haprian, V., Antal, J.B.: An early look at the ldbc
social network benchmark’s business intelligence workload. In: Proceedings of the
1st ACM SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA). pp. 1–11
(2018)

336

Soumaya Boukettaya, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020


